
8. M. J. McCroskey and J. G. McDougall, "Shock wave shapes on a sharp flat plate in rare- 
fied hypersonic flow," AIAA J., ~, 184 (1966). 

9. D. E. Rothe, "Flow visualization using a traversing electron beam," AIAA J., ~, 1945 
(1965). 

10. R. E. Hoglund, "Recent advances in gas-particle nozzle flows," ARS, 32, 662 (1962). 
11. A. B. Bauer, "Normal shock location of underexpanded gas-particle jet," AIAA J., ~, 

1187 (1965). 
|2. C. H. Lewis and D. J. Carlson, "Normal shock location of underexpanded gas and gas- 

particle jets," AIAA J., Z, 776 (1964). 
13. V. I. Blagosklonov and A. L. Stasenko, "Two-dimensional flows of a multiphase mixture 

in a nozzle and jet exhausting into a flooded space," Uch. Zap. TsAGI, 8, No. I, 32 
(1977). 

14. S.A. Senkovenko, "Structure of an underexpanded supersonic C02 jet," Proc. of Second 
Republican Conference on Aerodynamics and Heat and Mass Transfer, Section: Aero- 
dynamics at High VeloCities [in Russian], Kiev (1971), pp. 154-160. 

15. G. V. Tsiklauri, V. S. Danilin, and L. I. Seleznev, Adiabatic ~o-Phase Flows [in Rus- 
sian], Atomizdat, Moscow (1973). 

EXTERNAL EXCHANGE IN A DISPERSE BED 

Yu. A. Buevich and E. B. Perminov UDC 536.242:532.546 

The time-varying convective heat or mass transfer from objects immersed in a 
filtering granular bed is analyzed. Absorption of the heat or mass in the bed 
is taken into account. 

Heat and mass transfer between a bed and the surface of objects irmnersed in the bed is 
important in many processes involving heat treatment or diffusion treatment of articles in 
still or fluidized granular beds, during the cooling of furnaces and reactors with granular 
beds caused by inserting special heat exchangers into them, etc. 

If the characteristic linear dimension of the immersed object is much larger than the 
characteristic dimension of the microstructure of the bed (e.g., the grain diameter) it is 
natural to use the continuum transport equations in the various phases in the bed to de- 
scribe these processes. In several important cases these two equations can be replaced by 
a single transport equation; this approach corresponds to adopting a model for the disperse 
system around the object consisting of a homogeneous continuous medium which is described by 
appropriate effective thermal and diffusion properties. It is important to note that in 
general the effective thermal diffusivity and diffusion coefficient, which represent not 
only molecular transport but also the transport due to the convective heat and mass disper- 
sion in the discontinuous pore space of the filtering granular bed, are inhomogeneous and 
depend on the local filtration velocity of the continuous phase in the bed. 

The problems of the steady-state convective transfer from objects in a granular bed 
penetrated by a filtering flow were first formulated and solved in [I, 2], where absorption 
of heat or mass was neglected. Absorption has been taken into account in these problems on 
the basis of the film or penetration theory, as a rule; i.e., absorption has been taken into 
account by ignoring convection, in accordance with mass-transfer systems in which chemical 
reactions are occurring (see, e.g., the review in [3, 4]). In [5] there is an example of 
the application of a penetration theory to the analysis of external heat transfer in a flui- 
dized bed. In the first case, as is usual in convective-diffusion processes, the surface in 
the flow is far from uniformly accessible with respect to diffusion; in the second case, it 
is uniformly accessible. 

In actual granular-bed installations it is extremely common to find situations in which 
the convective transport and the acceleration of this transport caused by the absorption of 
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a substance within the bed are equally important. The impurity diffusing through the bed 
may be absorbed as the result of homogeneous or heterogeneous chemical reactions; heat may 
be absorbed by particles which are rapidly removed from the heat-exchange surface in a state 
of pronounced fluidization [5]; and heat may also be absorbed, e.g., because of a high heat 
of reaction of catalytic reactions which occur in reactors with a bed of catalyst particles 
[6]. It is thus necessary to consider both convective diffusion and the absorption of heat 
or mass in the granular bed. We need a better picture of events than is given us by the 
comparatively few theoretical papers on convection complicated by chemical reactions [4]. 

Below we will discuss this problem in the time-varying, single-phase case, and we will 
solve the problem for the particular cases of a plate oriented parallel to the flow, of a 
circular cylinder with axis normal to the flow, and of a sphere at high Peclet numbers. 

Formulation of the Problem. We consider the convective-diffusion equation in the form 

aT 
c~ + (uv) T = V (D~vT) - -  kT, ( 1 ) 

Ot 
where 

a = 8 + ( 1 - - e )  cid~,  De = ge k - -  K (2) 
codo codo ' codo 

The equation corresponds to a single,temperature model for the dispersive medium, which 
is a good approximation if the time variation of the transport process is slow, if the con- 
tact conductivity of the particles can be ignored, and if the transport caused by the aver- 
age and fluctuating motion of the disperse phase can be ignored [7]. The same equation de- 
scribes external heat transfer in the opposite limit -- in a bed with pronounced fluidization, 
in which case there is a rapid mixing of the disperse phase. In other words, in this case 
the exchange of particles, which serve as heat sinks, between the core of the bed and the 
surface zone is very rapid [5], and we have ~ = c. In problems involving the diffusion in 
the gaps between particles, we must assume codo = I and cldl = 0. 

The tensor of the effective thermal diffusivity or effective diffusion coefficient in- 
corporates both molecular transport and convective dispersion. Its eigenvalues can be written 
[1,  2, 8] 

D~,~ = Dtl = D ~ 2k[lau, D~,2 = De,3 = D• = D -{- 2kiau. (3) 

For definiteness we will use the coefficients kl[ = 0.76 and k• 0.19 calculated in [8]. We 
direct the xl axis along the local filtration velocity u. This velocity is assumed to be 
independent of the time and known, e.g., from a solution of the corresponding filtration 
problem. The effective coefficient D is also assumed to be a known function of the physical 
properties of the bed. 

We write the initial and boundary conditions for the solution of (I) in the form 

= n O T  I = To(S), (4) Tit=o 0, T l r ~ = 0 ,  T +  -0~ r~S 

where S is the surface area of the object, and To may in general depend on the position of 
the point on this surface. 

The solution of problem (I), (4) can be reduced to an integration of the solution of 
the corresponding problem with k = 0, i.e., without absorption [9]. Examining the solution 
of the problem which follows from (I), (4) after Laplace time transforms are taken, we can 
easily show that 

t 

T =  k S T ~  k-~t~ ) d t + T ~  (5) 

0 

T = T(t,  r; k), T O= T(t, r; 0). 

The s o l u t i o n  o f  the  s t e a d y - s t a t e  p r o b l e m  c o r r e s p o n d i n g  to  ( 1 ) ,  (4) i s  found  f rom (5) i n  t he  
limit t § ~. Our first task is thus to find the solution of the time-varying problem with 
k = O. An equation like (5) is also valid for any linear function of T and of its deriva- 
tives with respect to the coordinates, in particular, for the flux of a substance away from 
the surface of an object. 
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In the particular problems discussed below we will assume that the "macroscopic" Peclet 
number Pe, which is a measure of the convective diffusion toward the object in the flow, is 
large. Then T is nonzero only in a thin region near the surface, over whose thickness T 
varies much more rapidly than along the surface itself. In this case we can approximate the 
components of u by their values in the immediate vicinity of the surface, and in the first 
term on the right side of (I) we can ignore the derivatives with respect to the tangential 
coordinates in comparison with the derivatives along the normal. Steady-state problems with 
k = 0 can be solved by reducing (I) to the ordinary heat-conduction equation [10], which is 
a particular case of the Poincare-~Lighthill-Ho method; an alternative approach is to use the 
latter method in the more general form, as in [I, 2]. 

It is not sufficient here to solve the time-varying problems with k = 0. Below we will 
consider only problems with a boundary condition of the first kind at the surface of the 
object [~= 0 in (4)] with To = const, in which case we can introduce a self-similar variable 
and reduce the problem to that of solving an ordinary differential equation and a first- 
order partial differential equation, as proposed by Ruckenstein [11]. 

Plate. We can illustrate the general method for the problem of the exchange of a bed 
with a plate oriented parallel to a filtration flow. This problem can also be solved 
exactly; the exact solution holds for arbitrary values of Pe and k [12] but is extremely 
complicated. In this case we have 

u = const, D• = (1 + ?)D,  ~ = 0,38au/D, (6) 

and the  c o e f f i c i e n t  y i s  a " m i c r o s c o p i c "  ( s t r u c t u r a l )  P e c l e t  number f o r  t h e  p a r t i c l e s  o f  t h e  
g r a n u l a r  b e d .  

From ( 1 ) ,  (6) we h a v e  the  e q u a t i o n  

OT OT ~T . + u = (1 + ? ) D - -  kT,  (7) 
ot Ox O~ 

which must be solved under the conditions 

Tit= o = O, TIw~ = O, TIv=o = To. (8) 

Using the approximation of a thin diffusion bed with k = 0, we set T ~ = T~ where 
n = y/~(t, x). Then from (7) we find 

d2T~ + ~ = 0, (9) 
d~ ~ d B [ 2 ( I + w )  D k Ot "-ffffx 1 /  

where ~ = 5 2 . The expression in braces in (9) must be equal to a constant; it is easy to 
see that the function T~ is invariant with respect to the choice of this constant. If we 
set it equal to two, then Eq. (9) splits into the two equations 

#_iT + 2~ a T  O~ O~ 0, a - : - +  u = 4 ( 1  + ?)D.  (10) 
dn z Ot Ox 

The s o l u t i o n s  o f  t h e s e  e q u a t i o n s  unde r  c o n d i t i o n s  (8) and unde r  t he  o b v i o u s  c o n d i t i o n  
�9 = 0 a t  t = 0 a r e  o f  t h e  f o r m  

T ~ = To erfc ~ = To erfc [~6 (t, x)], ( 1 ! ) 

= 6z = ~ 4(1 W y)(D/a)t, t<(a/u)x,  (12) 

t 4 (1 + ?) (D/u) x, t > (a/u) x. 

I n  t h e  d e r i v a t i o n  o f  (11) and (12) we a c t u a l l y  made no a s s u m p t i o n  r e g a r d i n g  Pe;  t h e s e  e q u a -  
t i o n s  t h u s  h o l d  f o r  an a r b i t r a r y  v a l u e  o f  Pe i f  t h e  l o n g i t u d i n a l  d i s p e r s i v e  t r a n s p o r t  o f  t he  
substance is negligible in comparison with the convective transport. 

The local flux of the substance away from the plate in the case k = 0 is 

' 0T~ J { [ a ( l + v = o =  t <  qO= - - ( 1  + ?) O , ~ -  9 To ~)O/~t] I/2, (a/u)x, 
To[u(1 + ?)D/=x]*/~, t>(a/u)x. (13) 

At a point at a distance x from the front edge of the plate a steady state is thus reached 
after a finite time (~/u)x. 
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Fig. I. a) Ratio of the local flux away from the plate 
to its value in the limit k § 0 (a) as a function of the 
dimensionless longitudinal coordinate ~; b) the same, in 
the case k + ~. The horizontal dashed line and the dashed 
curve correspond to the limiting cases q/q~ = 1 and q/ 
q~ = 1 I r  

The solution of the corresponding problem with k =/=0 is found from (11)-(13) with the 
help of general equation (5). In particular, we have 

qo [ T~ IV'(1-I-'7> Dk ergo /~ -~  -x-l- + ')D exp (---~)} ' = x  t~X'U 
(14)  

For small and large values of kx/u we find 

i u ( l + ? ) D  1 kx , kx 1 
q~  (15) 

The first of these expressions corresponds to the case in which the absorption of the sub- 
stance is slight; the second expression corresponds to the case in which this absorption is 
pronounced, and the surface far from the front edge of plate becomes uniformly accessible in 
practice. The corresponding equations for the steady state (t + ~) are particularly impor- 
tant. In this case we find from (14) 

! 
q =. exp (--~)+ V ~  erfc V~ q = erf V~ + ~ exp (--~), 
qo q~ (16) 

V :  kx qo= To (l + ?)Du q , =  To ~/(I + ?)DD$ ~ = . - -  . 
~ X  ' U 

Figure ] shows the ratios in (16) as functions of the dimensionless longitudinal coordinate. 
In particular, we see that the absorption of the substance corresponds to the establishment 
of a uniform local flux over the surface of the plate. At small values of x the substance 
is removed primarily by convection, while at large values of x it is removed primarily by 
absorption. 

For the total flux of the substance away from a plate of length L we find from (16) 

1 

Qo 2 

Q ( I +  1 )erfl/'~-L+. 1 exp(--~L), 

kL 
Qo = 2To ~p'~(1 +~,)DuL Q= = To ~/ (1 -6 ?)Dk L, ~L Q 

These results are plotted in Fig. 2. We see in particular that absorption increases the 
flux considerably. 

(17) 
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Fig. 2. I) Ratio of the total flux 
away from theplate to its value in 
the limit k + 0 as a function of the 
dimensionless length of the plate 
~L; 2) the same, for the limit k + 

Under otherwise equal conditions, an increase in the radius of the particles in the 
bed, a, increases the structural Peclet number y and thus the total flux (at y >>| we have 
Q ~ ~). An increase in the filtration velocity u also increases y, but it simultaneously 
reduces the parameter ~L. It is easy to see that the increase in Q with increasing u is 
more pronounced, the shorter the plate. 

The results given above also hold for an arbitrary cylindrical surface with rectilinear 
generator directed along the flux, provided that ~, the thickness of the wall layer, is much 
smaller than the radius of curvature of the surface. 

Cylinder. We now consider the exchange of a granular bed with a circular cylinder 
whose axis is perpendicular to the filtration velocity. In this case the following condi- 
tions hold near the surface of the cylinder: 

uT~2u(g/R)cosO, u 0 ~ - - 2 u s i n 0 ,  g =  r - - R ,  (18) 

D i ~ ( l + T s i n  0)D, ? = O,76au/D. 

The components of the filtration velocity correspond to potential flow around the cylinder; 
strictly speaking~ these components can be found from the linear-filtration problem, i.e., 
for a bed of sufficiently small particles. The value of the angle e = 0 of the cylindrical 
coordinate system corresponds to a line drawn from the center of the cross section of the 
cylinder to its rear point. 

Instead of Eq. (7) in this case we have the following equation in the approximation of 
a thin diffusion layer: 

OT g OT 2u o.OT - -  kT, (19) + 2 u  cosO sin - - = ( l + ? s i n O ) D  02T 
Ot R Oy R O0 Og~ 

The boundary cond i t i ons  in  (8) are again  imposed on the s o l u t i o n  of t h i s  equa t ion .  

Again introducing the self-similar variable ~ y/6(t, 0) and the quantity ~= ~2 = , we 
find an equation for T~ which is the same as Eq. (10), whose solution under conditions 
(8) is given in (11). The equation for ~ is 

09 u sin0 0 9 =  2u ~ c o s 0 + 2 ( l + y s i n  0)O. (20) 
2 0 t  R O0 R 

Solving the characteristic system of equations for Eq. (20), we find 

~sinZS-- 2R2 cosO--? O - - - - s i n 2 8  8 2ut ~,  
Pe 2 4 

where Pe uR/D, and f(z) is an arbitrary function of its argument, which can easily be 
found fro the condition �9 = 0 at t = 0 by expressing the various functions of 6 in (21) in 
terms of tg (0/2). We finally find 
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2Rz {cos 0 1--~2  ? [ 1 0--arctgt~ -- 1 sin20+ ~3(1--~3z) ]} , ~ -- exp ~ ] [ 2 u r  
Pe sin20 1 + ~ 2 4 (1 + f$z)z ~ , , / t g  . 

q~ (22) 

The l o c a l  f l u x  o f  t h e  s u b s t a n c e  away f r o m  t h e  s u r f a c e  o f  t h e  c y l i n d e r  i s  (k = 0) 

o r ~  v=o= - - . o  1/~p-~pe ToO (1 + ?s in  O) sinO 
qO = _ (1 + ~? sin 0) D -ffff--y R G (t3, 13; ?) ' 

6 = { c o s 0  1 - -~z  [ 1 0 - - a r c t g t $  I s i n 2 0 +  t3(1--1~2) ]} ' /2 1 -j- ~ "f 2 - -  ~ ( i  -[- ~2)z " ( 2 3 )  

In the limit t § ~ (B § ~) we find from this equation the result which has been found pre- 
viously for the steady-state case without absorption [I, 2]. The characteristic time for 
relaxation to steady-state exchange at the point with coordinate @ is (~R/u) Iln tg(@/2)[-~; 
i.e., this time varies from zero for the front and rear points to infinity for the equator- 
ial points. 

The total flux away from the cylinder in the case k = 0 is 

Q~ = _ _ r o O F L - ~ - ;  ? ' F = 2 G(@, ~; ?) 
b' 

The local and total fluxes of the substance in the case k=/= 0 are found from (23) and 
(24) by using an equation like (5). In particular~ in the steady state we would have 

- R ' 1 3 ' + ~ G ( O ,  [~; ~) ' 
If(012) 

Q =  To D e-~F ; ? dz, o . . . .  
�9 2 ~  
0 

(26) 

It is not difficult to show that in the limits ~ § 0 and ~ + ~ Eqs. (25) and (26) yield re- 
sults which have been found previously for the cases of convective diffusion without absorp- 
tion and from the penetration theory of diffusion from a uniformly accessible surface in the 
absence of convective transport. In this latter case, however, the effect of convective dis- 
persion on the effective "transverse" diffusion (dispersion) coefficient D ! is taken into 
account. 

Sphere. For flow around a sphere in the linear filtration problem we have the following 
relations near the surface of the sphere: 

ur ~ 3u (v/R) cos O, u o ~ - -  (3/2) u sin O, V = r - -  R, 

D 2 ~ (1 + ? sin 0) D, ? = 0.57au/D. (27) 

In place of Eq. (7) or (19) in this case we must solve the following equation under condi- 
tions (8) : 

OF 3u OT - -  - -  kT .  (28) o~ + 3 u  Y--Y--cosO O T - - - - s i n O  . . . . .  ( l + ? s i n 0 ) D  02T 
at R ag 2R o@ av 2 

Again introducing the variables n = y/5(t, @) and ~ = ~2, we find (1!) for T~ and 
for q9 we find an equation to replace (20): 

Oqo f3 u sinO Ocp 3u - -  = - -  qocos@+ 2(1 + ? s in0 )D .  
2 0 t  4 R O0 R (29) 

From the solution of the characteristic system for this equation we find, in place of (21), 

rcsin.~O-- 8Rz cosO--  cos30 - 3 O--  1 s in20+  1 sin40 ~ f  l n t g - - ~ - + ~ - ~ ]  P e = - - . ( 3 0 )  
3Pe , 8 . 4 32 ' D 

Proceeding as above, we find, in place of (22) 

8R 3 ~ 1 -- 83 1 
cos O 

3 P e s i n  ~O [ 1 + 8 3  3 c ~  l+ f t3  - -  
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3 
--? 8 

0_____3 arctg[5_ 1 s in20+ [5(1--~) +___1 s in40-  
4 4 (1 -6 ~)2 32 (31 ) 

4 (1 -6 ~z), ' ~ = exp \ 2--~-) tg - ~ - .  

The local flux of the substance away from the spherical surface in the case k = 0 turns 
out to be 

OT~ v=0= _ / 3 P e  ToD" (1 -6 ?sinO)sin~O 
q ~  ?sinO) ~ {/ ~ -  R a(O, [~; ?) 

1--[ ~2 1 cosaO+ 1 ( 1 - - [ ~ )  a -  
1 -6 [~z T ~ 1 -6 ~z  

3 a r c t g ~ - -  1 sin 2 0 +  ~(1-~2)  
- - - ] -  T (I + ~) 2 -6 

f 
G --=/cos 0 

o 

1 + sin 40 
32 

1 ]5(1--[5z)(1--6152-6159 ]}x/2 
4 .  : " 

(32) 

In the limit t § ~ (B § ~) we again find the known result for the steady state without ab- 
sorption [I, 2]. In the case y = 0 we find from these equations the equations derived in 
[11]. The characteristic time for relaxation to the steady state is the same as that for a 
cylinder�9 

The total flux away from a sphere in the case k = 0 is given by 

) �9 2~R ; ~ ' F = .  G(0, ~; V) 
0 

The l oca l  and t o t a l  f luxes  of the subs tances  in  the case k :/='0 are found from (32) and (33) 
and are described by relations reminiscent of (25) and (26): 

1/f-3P~ eaT~ (1 + ?sinO)sin20 " 0 f d[~ 
q =  V 2~ R tg ~- ~a+OG(0, ~; ?) 

tr 
o a  

Q = VKFeGDt?  e-~F ; ? d z ,  o - -  

�9 3 U 
0 

(34) 

(35) 

(these relations correspond to the steady state). 

To determine the fluxes away from a cylinder and a sphere in a filtering granular bed 
for various values of the parameters we would need to carry out extensive numerical calcula- 
tions, in contrast with the flux away from a plate. The conclusions reached for the plate, 
however, remain qualitatively correct for objects of other shapes, as do some of the conclu- 
sions which follow from an analysis of the corresponding problems without absorption. An 
increase in the parameter k leads to a substantial increase in the local and total fluxes; 
the distribution of the flux over the surface in the flow becomes progressively more uniform. 
An increase in the importance of convective dispersion in comparison with molecular transport 
(i.e., an increase in y) leads to an increase in the local flux, which is particularly marked 
in the equatorial zone of the object; it also shifts the flux maximum from the front point to 

a point downstream along the surface. 

This theory has certain limitations. First, it ignores the existence of a layer of 
relatively high porosity near the surface; this layer is important when its thickness becomes 
comparable to 6, the thickness of the diffusion boundary layer, for example, at very small 
values of t or at very large values of Pe in the vicinity of the front point of the object. 
Furthermore, we have ignored the contact surface and also the dispersion associated with 
fluctuations in the velocity of the continuous phase which result from random fluctuations 
in the porosity of the bed. Finally, we have used the single-temperature model based on 
Eq. (I). This model is exact if we are dealing with the mass diffusion of an impurity in the 
gaps between particles which are impenetrable for the impurity (i.e., if there is no exchange 
between phases, but the impurity may disappear, of course, in a chemical reaction at the 
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surfaces of the particles or between them). This model is also exact in the case of a very 
rapid removal of particles from the diffusive boundary layer and in a study of heat transfer 
in the case in which the particles serve as certain effective heat sinks [5]. In the case 
of heat transfer in a still or slightly fluidized bed, in contrast, in which we cannot assume 
a very intense mixing of particles, this model is valid only if the heat transfer by the dis- 
perse phase is ignored, in cases in which the transfer differs only slightly from steady- 
state transfer [7]. 

NOTATION 

a, Particle radius; Co, ci and do, dl, specific heats and densities of the continuous 
phase and of the particle material, respectively; De, DII, D~ and D, dispersion tensor, its 
eigenvalues, and the effective coefficient of molecular thermal diffusivity (or the diffu- 
sion coefficient), respectively; F, G, functions introduced in (23), (24) and in (32), (33) 
for the cylinder and the sphere, respectively; kit, kl, coefficients in (3); K, k, absorption 
coefficients; L, length of the plate; Q, q, total and local fluxes; R, radius of the cylin- 
der or sphere; r, radius; T, To, temperature (or concentration) and its value at the surface 
of the object; t, time; u, filtration velocity; x, y, longitudinal and transverse coordi- 
nates; ~, coefficient defined in (I), (2); ~, variable introduced in (22) or (3]); y, struc- 
tural Pecelt number, defined in (6), (]8) or (27); 6, thickness of the diffusion boundary 
layer; e, porosity of the bed; ~ = y/6, self-similar variable; e, angular variable; • , coeffi- 
cient in (4); %e, effective dispersion tensor, introduced in (I); ~, EL, dimensionless longi- 
tudinal coordinate and length of the plate; ~, parameter introduced in (26) and (35) for the 
cylinder and the sphere, respectively; ~ = 62; Pe = uR/D; the degree symbol corresponds to 
the case with k = 0; the subscripts 0 and ~ denote the fluxes corresponding to the case k + 
0 and k § ~, respectively. 
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